
MA 111, Topic 2: Cryptography

Our next topic is something called Cryptography, the mathematics of
making and breaking Codes! In the most general sense, Cryptography is
the mathematical ideas behind changing a message that is written plainly in
some language (usually English) to make it appear unreadable to everyone
except the intended recipient. In this chapter we will discuss several
different ways of doing this.

Definition 1. The process of changing the message from readable to
unreadable is called Encryption. This process often requires using
something called a Encryption Key.

Somehow the intended recipient must read the message. They will have to
perform a Decryption before the message will be readable.

Definition 2. Decryption is the process of changing from unreadable
back to readable. This process is designed to use something called a
Decryption Key.

Before we start encrypting and decrypting we will need to learn something
called modular arithmetic. Modular arithmetic is a new type of adding and
multiplying for integers where integers “wrap around” upon reaching a
certain number called the modulus. Usually for us we will be working mod
26 since there are 26 letters in the alphabet.

Long Division Remainder

Consider the long division problem

5) 42

We have

5
8 R 2

) 42

This means that 42 = 8× 5 + 2

Definition 3. The number 8 is called the quotient. The number 2 is
called the remainder.

We will not be using the quotient in MA111. The remainder however will
be very important for us.
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Finding Remainders, Method 1

Here is a procedure for using your calculator to find the remainder of

n) a .

This procedure works when a is not negative.

(1.) Is a less than n? If yes, then STOP! a is the remainder! If no, go on
to the next step.

(2.) Replace a by a− n. Now consider a− n as a new value.

(3.) Is a− n less than n? If yes, then STOP. If not, go back to step (2.)
and subtract n again. In symbols this means now consider
a− n− n = a− 2n now.

Repeat Steps (2.) and (3.) as many times as necessary until you
reach the first value that is less than n.

Example 4 (Drill Time: Remainders from Long Division). Get some
practice finding remainders. Use your calculator (if you want)).

• Find the remainder for 5) 87 .

• Find the remainder for 7) 92 .

• Find the remainder for 13) 111 .

• Find the remainder for 26) 185 .



Finding Remainders, Method 2 (Quick)

Here is a QUICK procedure for finding the remainder of n) a .

This procedure works when a is is not negative.

(1.) Divide a by n. If the result is a whole number without a decimal then
STOP. The remainder is 0!

If the result has a decimal, go to step (2.)

(2.) Remove the number that precedes the decimal. Do this by
subtracting the preceding value in your calculator. This should give
you only a decimal amount.

(3.) Multiply this decimal amount by n. Usually this gives a whole
number (no decimal). Sometimes, because of round-off error, your
calculator gives a decimal number that is really close to a whole
number. Use normal rounding conventions to find the best whole
number (no decimal) b. The remainder is b!

Example 5 (Drill Time: Quick Remainders from Long Division). You
should definitely use a calculator to do the following! Try to use the
“Quick” method (Method 2) for finding each remainder.

• Find the remainder for 3) 400 .

• Find the remainder for 13) 400 .

• Find the remainder for 23) 400 .



• Find the remainder for 33) 400 .

Modular Arithmetic

It will be best to use alternate language to talk about remainders.

Definition 6. We say a is equal to b modulo n and write a = b(mod n)
or a(mod n) = b(mod n) to mean that

n) a

produces a quotient q (which we ignore) and a remainder b (which we
want). That is

n
q R b

) a

We write a = 0(mod n) if n divides (no remainder) into a.

We write a = 1(mod n) if n divided into a gives a remainder of 1.

We write a = 2(mod n) if n divided into a gives a remainder of 2.
...

This is a simple mathematical idea to describe but it still takes some
practice. Amazingly, this simple idea is the basis for many different types of
codes, both ancient and modern.

Related Idea: Simplifying Positive Mods, Method 1

Often our code calculations will produce unsimplified modular arithmetic
answers. By simplified we mean that a(mod n) is written so that a is
between 0 and n− 1; in symbols 0 ≤ a < n.

Here is a procedure for simplifying a(mod n) when a is positive.

(1.) Is a less than n? If yes, then STOP! a(mod n) is already simplified.
If no, go on to the next step.

(2.) If a(mod n) is not simplified and a is positive, replace a by a− n. In
symbols this means

a(mod n) = a− n(mod n).



So a− n is the new value for us to consider.

(3.) Is this new value simplified? If yes, then STOP. If not, go back to
step (2.) and subtract n again. In symbols this means

a− n(mod n) = a− 2n(mod n).

Repeat Steps (2.) and (3.) as many times as necessary until you reach
a simplified value.

Example 7 (Drill Time: Simplifying Mods). Get some practice simplifying
the following modular arithmetic! Use your calculator (if you want).

• Simplify 45(mod 26).

• Simplify 19(mod 26).

• Simplify 37(mod 20).

• Simplify 14(mod 16).

• Simplify 53(mod 26).



• Simplify 100(mod 20).

Related Idea: Simplifying Positives, Method 2 (Quick)

Here is the QUICK procedure for simplifying positive a(mod n)

(1.) If a(mod n) is not simplified, divide a by n. If the result is a number
without a decimal then STOP. a(mod n) simplifies as

0(mod n).

If the result has a decimal, go to step (2.)

(2.) Remove the number that precedes the decimal. Do this by
subtracting the preceding value in your calculator. This should give
you only a decimal amount.

(3.) Multiply this decimal amount by n. Usually this gives an exact
number (no decimal) b. Sometimes, because of round-off error, your
calculator gives a decimal number that is really close to an exact
number. Use normal rounding conventions to find an exact number
(no decimal) b. This is your answer

a = b(mod n).

Example 8 (Drill Time: Quick Simplifying). You should definitely use a
calculator to do the following! Try to use the “Quick” method (Method 2)
for simplifying each.

• Simplify 103(mod 100).

• Simplify 103(mod 25).



• Simplify 145(mod 26).

• Simplify 237(mod 20).

• Simplify 353(mod 26).

• Simplify 400(mod 20).

Modular Arithmetic Exponent Law 1

Definition 9 (Modular Arithmetic Exponent Law). Applying exponents in
modular arithmetic can be done before or after simplifying! In symbols this
says that

ak(mod n) = (a(mod n))k

for any integer exponent k.

If we apply the exponent after simplifying, we may need to simplify again!

Example 10 (Modular Arithmetic Exponent Law 1). Here are a couple of
examples that illustrate the above law.

• For 62(mod 4) we can calculate that 62(mod 4) = 36(mod 4), then
simplify to find 36(mod 4) = 0.

• Or we can use our exponent law first, then simplify:
62(mod 4) = (6(mod 4))2 = (2(mod 4))2 = 4(mod 4) = 0.



Modular Arithmetic Exponent Law 2

Definition 11 (Modular Arithmetic Exponent Law 2). When an exponent
calculation is too big for a calculator to handle we have to break the process
into smaller pieces using the following exponent law. If ` is a big exponent,
then write ` = k + j for two smaller numbers k and j. We can simplify as

a`(mod n) = ak(mod n) · aj(mod n)

Example 12 (Modular Arithmetic Exponent Law 2). Here is an example
that illustrate the above law.

• The calculation 2314(mod 4) can be broken up into smaller
calculations using the fact that 14 = 7 + 7.

• Since 237(mod 4) = 3404825447(mod 4) = 3(mod 4) our exponent law
says

2314(mod 4) = 237(mod 4) · 237(mod 4) = 3(mod 4) · 3(mod 4).

Related Idea: Large # Modular Arithmetic

Example 13 (Large # Modular Arithmetic). Let’s compute 829(mod 41).
Even expensive graphing calculators will return an answer that is rounded
off.

(1) We need to find an exponent 8k(mod 41) that our calculator CAN
handle. Smaller calculation we can make (using Method 2) are
89(mod 41) = 5 and 810(mod 41) = 40.

(2) Now break up the big exponent into smaller ones using the previous
step. To calculate 829(mod 41), we will think of 29 as

29 = 10 + 10 + 9.

(3) The big exponent can be calculated using the pieces from the previous
step. Here it turns out that

829(mod 41) = 810(mod 41) · 810(mod 41) · 89(mod 41).

Example 14 (Drill Time: Exponents 1). Use the exponent laws to simplify
these. Check your answers with your neighbor(s)!



• If 116(mod 4) = 1, what is 1112(mod 4)?

• For 2015(mod 13), what is a good way to break up the exponent
` = 15?

• Suppose 237(mod 4) = 3. Find 2321(mod 4).

Example 15 (Drill Time: Exponents 2). Use the exponent laws to simplify
these.

• Simplify 72(mod 20).

• Use your answer above to QUICKLY find 76(mod 20).

• Can you use your two answers above to find 714(mod 20)?



Related Idea: Cryptography Notation

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Definition 16 (Plaintext 2 and Ciphertext �). We use the word
Plaintext to describe unencrypted/decrypted, readable English. To
describe numbers associated to plaintext, we use the following symbol: 2

We use the word Ciphertext to describe encrypted, unreadable language.

To describe numbers associated to ciphertext, we use the following symbol:
�

Example 17 (Plaintext 2 and Ciphertext �). For example, the plaintext
message “I” would have 2 = 9.

We could encrypt this as the ciphertext “T”, meaning � = 20.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 18 (Congratulations! You Are Now A Spy 1). Your first mission
is to intercept and decipher enemy communications. The enemy is known to
use a relatively simple encryption methods.

Enemy agents are after one of several (code named) targets:

DOG, MAN, BOY, DAD, MOM, BIT, BOT

• If you intercept the message “PRP”, what is the target?

• Using the enemy agent’s method above, how would the word “ZOD”
be sent?



Encryption Method: Caesar Cipher

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Definition 19. The Caesar Cipher is a code that encrypts a letter by
moving 3 units to the right (with alphabetic order). For the letters A–W
this code can be described using the rule

2 + 3 = �.

The letters X, Y, and Z (respectively) are encrypted as A, B, and C
(respectively).
Encryption for the Caesar Cipher can be described completely using
modular arithmetic as

2 + 3(mod 26) = �.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 20 (Hail Caesar 1). Gaius Julius Caesar has been surrounded
during the battle of Alesia! He needs you to respond to two questions posed
by one of his Lieutenants. Unfortunately, those filthy Gauls are everywhere!

You will need to encrypt Caesar’s answers:

• Question: What do you need?

Caesar’s Answer: WATER

• Question: Do we attack tomorrow?
Caesar’s Answer: YES



Example 21 (Hail Caesar 2). You return to Caesar with a message from a
Lieutenant.

• The message gives the time of the next attack. It is encrypted as the
following:

GDZQ

When is the next attack?

• Like all Romans, Caesar is extremely superstitious and avoids making
actions on the left. If you were to decrypt the message above by only
moving to the right, how much would you have to move by?

Decryption Method: Caesar Cipher

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Definition 22. A Caesar Cipher can be decrypted by moving 3 units to the
left (against alphabetic order). For the letters A, B, C this decryption can
be described using the rule

� + 23 = 2.

Technically, the letters D–Z are decrypted by wrapping back around the
alphabet.
Decryption for the Caesar Cipher can be described completely using
modular arithmetic as

� + 23(mod 26) = 2.



A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 23 (Hail Caesar 3). One last exchange message before the attack:

• Caesar asks you to encrypt and deliver the following message:

FORTUNA

• You return with the following encrypted message. Decrypt it for
Caesar:

YLFWRULD

Code Summary: Caesar Cipher

We will talk about several different types of codes during the next few
weeks and it will be good to keep a summary for each. The ideas behind
Encryption Key and Decryption Key for the Caesar Cipher will be
applicable to all codes. Additionally Key Secrecy, the idea for how secret
the decryption key must be, and Letter Frequency, or how much a cipher
changes the nature of how often letters appear, will become increasingly
important. The summary below represents information about codes when
encrypting and decrypting English language plaintext.



Encrypt Decrypt Key Letter
Cipher Key(s) Key(s) Secrecy Frequency
Caesar 3 23 Private Normal

Related Idea: Frequency Analysis

Anyone who has watched Wheel of Fortune or played Scrabble knows that
the English language uses some letters more frequently than others.

A

B
C D

E

F
G

H

I

J K

L

M

N
O

P

Q

R S

T

U

V
W

X
Y

Z

Some codes do not hide the natural frequency of letters. The Caesar Cipher
disguises letters, but does not disguise the natural frequency of letters!

A
B

C

D

E
F G

H

I
J

K

L

M N

O

P

Q R

S

T

U V

W

X

Y
Z

The most frequent symbol used in the ciphertext will correspond to the
letter “E” in the plaintext. For the Caesar Cipher, this corresponds to the
numeric 5 + 3 and is the ciphertext letter “H”.

Encryption Method: Shift Cipher

Definition 24. An English Language Shift Cipher using the shift ∆
moves every letter of the alphabet ∆ places to the right. The conversion
from English plaintext 2 to ciphertext � is represented by the formula

2 + ∆(mod 26) = �.



So the Caesar Cipher is just a type of Shift Cipher, but with the specific
value of ∆ = 3.

Allowing for more values for the shift ∆ means more options and makes for
a code that is more challenging to break!

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 25 (Hail Caesar 4). The attack was a success and the Gauls are
now on the run! Unfortunately, they managed to capture a messenger who
knows Caesar’s secrets for encryption and decryption. Caesar decides to try
something new. Help him figure it out!

• Caesar decides to use a shift cipher with ∆ = 5. Encrypt the message
“ATTACK” using this cipher.

• The message “KQJJ” was encrypted using the shift cipher with
∆ = 5. Decrypt the message!

Related Idea: Frequency Analysis

Like the Caesar Cipher, a Shift Cipher disguises letters, but does not
disguise the natural frequency of letters!



A B

C

D
E

F

G

H I

J

K

L
M

N

O

P
Q

R

S

T
U

V
W

X

Y

Z

The most frequent symbol used in the ciphertext will correspond to the
letter “E” in the plaintext. For a Shift Cipher, this is the ciphertext letter
for the shift 5 + ∆.

Decryption Method: Shift Cipher

Definition 26 (Decryption: Shift Cipher). An English Language Shift
Cipher

2 + ∆(mod 26) = �.

can be decrypted by undoing the shift ∆. Some letters will be easy to
decrypt and some letters will wrap around the alphabet.

Decryption for an English Language Shift Cipher can be described
completely using modular arithmetic as

� +∇(mod 26) = 2,

where ∇ is a value so that ∇+ ∆ = 26.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 27 (Hail Caesar 5). Caesar has used so many different values of
∆ to make shift ciphers that he can’t remember how to decrypt!

• Caesar decides to use a shift cipher with ∆ = 11. Tell Caesar how
much he will have to shift to the right in order to decrypt messages
encoded with this cipher.



• Write a modular equation to represent decryption for this shift cipher.
What does this decryption equation do to the letter “P”?

Example 28 (Hail Caesar 6). Caesar has used so many different values of
∆ to make shift ciphers that he can’t remember how to decrypt!

• If Caesar used ∆ = 12, what is ∇?

• If Caesar used ∆ = 20, what is ∇?

• Caesar remembers one shift cipher with ∇ = 24. What is ∆?

• Caesar remembers one shift cipher with ∇ = 9. What is ∆?

Example 29 (It’s Greek To Me 1). Enemy agents have started to use
different alphabets for encryption.



α β γ δ ε ζ η θ ι κ λ µ
1 2 3 4 5 6 7 8 9 10 11 12
ν ξ o π ρ σ τ υ φ χ ψ ω
13 14 15 16 17 18 19 20 21 22 23 24

• What would the encryption rule � + 9 = � do to the Greek letter ζ?

• Write a modular arithmetic equation to represent a shift cipher that
sends α to κ?

Example 30 (It’s Greek To Me 2). Enemy agents have started to use
different alphabets for encryption.

• If they the equation � + 9 = �(mod 24) to encrypt, what will be the
equation to decrypt?

• If they the equation � + 20 = �(mod 24) to encrypt, what will be the
equation to decrypt?

Example 31 (It’s Greek To Me 3). Enemy agents have started to use
different alphabets for encryption.

• If they use the equation � + 7 = �(mod 24) to encrypt, what are ∆
and ∇?



• If they use a shift cipher that sends the letter “γ” to “τ”, what are ∆
and ∇?

! @ # $ % & ∅ Q ⊕ Σ Ψ
1 2 3 4 5 6 7 8 9 10 11

Example 32 (Alien Invasion 1). Aliens from Outer Space arrive on Earth.
Despite having mastered interstellar travel, they still use simple encryption
techniques. Fortunately, the written symbols for their alien language are
eerily familiar.

• Write the equation for the shift cipher that will encrypt the letter “@”
as the letter Σ.

• Write the decryption equation for the shift cipher above.

Example 33 (Alien Invasion 2). The aliens have no idea how easy it is to
break their code!

• If they use the equation � + 7 = �(mod 11) to encrypt their
messages, what are ∆ and ∇?

• If they use a shift cipher that sends the letter “∅” to “#”, what are ∆
and ∇?



Related Idea: Additive Inverse

Definition 34. The additive inverse for a(mod n) is a value a so that

a+ a = 0(mod n)

For English (or any Roman alphabet) Language, we will always have

∆ +∇ = 0(mod 26).

If a Language has n letters, then we have

∆ +∇ = 0(mod n).

From working with codes, we can understand that using the additive inverse
∇ “really” works by moving all letters to the left ∆ places.

Example 35 (Drill Time: Additive Inverse). Find the additive inverse for
each of the following. Use your calculator to first simplify (if needed). Then
find the number to add that gets you up to n. Check your answers with a
neighbor!

• Find the additive inverse for 14(mod 26).

• Find the additive inverse for 19(mod 26).

• Find the additive inverse for 37(mod 26).

• Find the additive inverse for 14(mod 16).



• Find the additive inverse for 53(mod 20).

Related Idea: Simplifying Negative Mods, Method 1

Recall that by simplified we mean that a(mod n) is written so that a is
between 0 and n− 1. In particular, a cannot be a negative quantity.

Here is a procedure for simplifying a(mod n) when a is negative.

(1.) Replace a by a+ n. In symbols this means

a(mod n) = a+ n(mod n).

So a+ n is the new value for us to consider.

(2.) Is this new value simplified? If yes, then STOP.

If not, go back to step (1.) and add n again. In symbols this means

a+ n(mod n) = a+ 2n(mod n).

Repeat Steps (1.) and (2.) as many times as necessary until you reach
a simplified value.

Example 36 (Additive Inverses and Negatives). Any time you see a
negative “–” in modular arithmetic, it means “Find the additive inverse to
whatever follows”. Answer these related questions.

• The quantity −4(mod 10) means the additive inverse of what?

• Simplify −4(mod 10).



• The quantity −9(mod 16) means the additive inverse of what?

• Simplify −9(mod 16).

• The quantity −14(mod 26) means the additive inverse of what?

• Simplify −14(mod 16).

! @ # $ % & ∅ Q ⊕ Σ Ψ
1 2 3 4 5 6 7 8 9 10 11

Example 37 (Alien Invasion 3). The aliens detect that humans have been
breaking their encrypted messages. They frantically try to make the code
more sophisticated by using larger shifts. Help humanity by answering the
following.

• What letter would 39(mod 12) correspond to in this language?

• What letter would −39(mod 12) correspond to in this language?



Example 38 (Drill Time: Simplifying Negatives). Simplify the following
negative modular arithmetic quantities using Method 1.

• Simplify −4(mod 15).

• Simplify −6(mod 20).

• Simplify −23(mod 10).

• Simplify −37(mod 20).

• Simplify −43(mod 10).

• Simplify −87(mod 20).

Related Idea: Simplifying Negatives, Method 2 (Quick)

Here is the QUICK procedure for simplifying negative a(mod n)



(1.) If a(mod n) is not simplified, divide a by n. If the result is a number
without a decimal then STOP. a(mod n) simplifies as

0(mod n).

If the result has a decimal, go to step (2.)

(2.) You need to get a negative decimal out of step (1.) Ignore the sign
and look at just the number that precedes (to the left) the decimal.
ADD THIS NUMBER! So if you see something like −4.246, add 4 to
get −0.246. This should always give you a negative decimal amount.

(3.) Add 1 to this negative decimal amount. This should give you a
positive decimal amount.

(4.) Multiply this positive decimal amount by n. Usually this gives an
exact number (no decimal) b, but sometimes you need to round up or
down. This is your answer

a(mod n) = b.

Example 39 (Drill Time: Quick Simplifying Negatives). Simplify the
following negative modular arithmetic quantities using Method 2.

• Simplify −44(mod 15).

• Simplify −66(mod 13).

• Simplify −100(mod 27).

• Simplify −1000(mod 37).



Code Summary: Add in the Shift Cipher

The summary below represents information about codes when encrypting
and decrypting English language plaintext.

Encrypt Decrypt Key Letter
Cipher Key(s) Key(s) Secrecy Frequency
Caesar 3 23 Private Normal
Shift ∆ ∇ Private Normal

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 40 ( Congratulations! You Are Now A (Better) Spy 2). Enemy
agents have started to make their codes more sophisticated. They now use
multiple shifts at once! You intercept a message and learn that the shifts
being used correspond to

∆1 = 4, ∆2 = 15, ∆3 = 7.

• How would you encrypt the plaintext “ATE”?

• How would you encrypt the plaintext “TEA”?

Encryption Method: Vigenère Cipher

Definition 41. An English Language Vigenère Cipher uses a different
shift for each letter, depending on the position of the letter in the message.



Encryption uses the rule

21 + ∆1(mod 26) = �1

22 + ∆2(mod 26) = �2

23 + ∆3(mod 26) = �3

...

where 21 is the first plaintext letter and ∆1 is the first shift, 22 is the
second plaintext letter and ∆2 is the second shift, etc...

Related Idea: Keyword

Definition 42. We use a Keyword to represent all of the different shifts
(and the order) to be used with a Vigenère Cipher.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 43. The keyword ENEMY gives the following shifts:

∆1 = 5 ∆2 = 14 ∆3 = 5 ∆4 = 13 ∆5 = 25

So the first letter in our message will get shifted 5 places to the right, the
second letter will get shifted 14 places to the right, and so on.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 44 (Congratulations! You Are Now A (Better) Spy 3). An
enemy agent uses a Vigenère Cipher. Here are the shifts that are used:

∆1 = 4, ∆2 = 15, ∆3 = 7.

• What Keyword is being used for this Vigenère Cipher?



• How would you encrypt the plaintext “MANY”?

Decryption Method: Vigenère Cipher

Definition 45. A Vigenère Cipher can be decrypted as follows:

(i) Identify ∆1,∆2, ∆3, etc . . . corresponding to the letters of the
Keyword.

(ii) Find the additive inverse ∇1 to ∆1. Next find the additive inverse ∇2

to ∆2. Continue for all values ∆k.

Together, the numbers ∇1, ∇2, ∇3, . . . are called the Decryption
Sequence.

To decrypt a Vigenère Cipher, we use the rule

�k +∇k(mod 26) = 2k.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 46 (Congratulations! You Are Now A (Better) Spy 4). The
enemy agent starts using a new keyword. You MUST break this new code!
You figure out the shifts being used are

∆1 = 1, ∆2 = 16, ∆3 = 16 ∆4 = 12, ∆5 = 5.

• What Keyword is being used for this Vigenère Cipher?

• Decrypt the ciphertext message “FDUYD”.



α β γ δ ε ζ η θ ι κ λ µ
1 2 3 4 5 6 7 8 9 10 11 12
ν ξ o π ρ σ τ υ φ χ ψ ω
13 14 15 16 17 18 19 20 21 22 23 24

Example 47 (It’s Greek To Me 4). You intercept an enemy message that
uses a Vigenère Cipher.

• If the shifts

∆1 = 16, ∆2 = 9, ∆3 = 17, ∆4 = 15

were used, what is the Keyword?

• How is the ciphertext “πoλα”? decrypted?

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 48 (Congratulations! You Are Now A (Better) Spy 5).

• An enemy agent uses a Vigenère Cipher with shifts

∆1 = 1, ∆2 = 16, ∆3 = 16 ∆4 = 12, ∆5 = 5.

What is the decryption sequence?



• An enemy agent uses the keyword TOME. What is the decryption
sequence?

α β γ δ ε ζ η θ ι κ λ µ
1 2 3 4 5 6 7 8 9 10 11 12
ν ξ o π ρ σ τ υ φ χ ψ ω
13 14 15 16 17 18 19 20 21 22 23 24

Example 49 (It’s Greek To Me 5).

• An enemy agent uses a Vigenère Cipher with shifts

∆1 = 12, ∆2 = 1, ∆3 = 8.

What is the decryption sequence?

• What is the decryption sequence for the keyword“αερσ”?



! @ # $ % & ∅ Q ⊕ Σ Ψ
1 2 3 4 5 6 7 8 9 10 11

Example 50 (Alien Invasion 4). Aliens start using Vigenère Cipher! You
determine that the aliens are using the keyword Σ$∅.
• How would the alien word “! & # #” be encrypted?

• What is the decryption sequence for this Vigenère Cipher?

• How is the ciphertext “@ΨQ@ decrypted?

Related Idea: Advantages of the Vigenére Cipher

The Vigenère Cipher is a HUGE improvement over Shift Ciphers because
any single letter can be encrypted in many different ways.

Theorem (Counting Possibilities for the Vigenère Cipher). The number of
different ways a letter can be encrypted using the Vigenère Cipher is at
most the length of the keyword being used. If the keyword has no repeats in
letters then this number is exactly the length of the keyword.

Example 51. For a Vigenère Cipher that uses the keyword “TWIN”, the
letter “E” could be encrypted using “T”, “W”, “I”, or “N”. This means
that “E” could be encrypted as

Plaintext Numeric � 5 5 5 5
Keyword Numeric 20 23 9 14

Ciphertext � Y B N S



Code Summary: Add in the Vigenère Cipher
The summary below represents information about codes when encrypting
and decrypting English language plaintext.

Encrypt Decrypt Key Letter
Cipher Key(s) Key(s) Secrecy Frequency
Caesar 3 23 Private Normal
Shift ∆ ∇ Private Normal

Vigenère ∆1∆2∆3 . . . ∇1∇2∇3 . . . Private Less Predictable

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 52 (New Cipher Times). Enemy agents are trying to invent a
new type of cipher. He decides on the following encryption scheme:

Plaintext � converts to Ciphertext �
A → C
B → F
C → I

• How will the plaintext letter “D” be encrypted?

• How will the plaintext letter “K” be encrypted?

Encryption Method: Times Cipher

Definition 53. A Times Cipher (also called a Decimation Cipher) can
be encrypted by scaling each letter position by an amount ?.



The conversion from English plaintext � to ciphertext � is represented by
the formula

?×�(mod 26) = �.

The conversion from plaintext � in a Language with n letters to ciphertext

� is represented by the formula

?×�(mod n) = �.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26

Example 54 (Trouble with Times Cipher). An enemy agent uses the
Times cipher

?×�(mod 26) = �.

• For the times cipher 4×�(mod 26) = �, how is the letter “I”
encrypted?

• For the times cipher 4×�(mod 26) = �, how is the letter “V”
encrypted?

• What could be wrong with the cipher 4×�(mod 26) = �?



Related Idea: Zero-Divisors

A weird thing can happen when using a Times Cipher. Two letters might
be encrypted as the same letter. The reason behind this are something
called zero-divisors.

Definition 55. A zero divisor modulo n for a is a non-zero simplified a
where some other non-zero simplified value b gives

a · b(mod n) = 0.

Example 56 (Zero-Divisor for n = 6). The values a = 2(mod 6) and
b = 3(mod 6) are simplified and not equal to zero-divisor. However,

a · b(mod n) = 2 · 3(mod 6) = 0

Because a · b(mod n) = 0, we can say that both a = 2(mod 6) and
b = 3(mod 6) are zero-divisors.

Example 57 (Drill Time: Zero–Divisors 1). Answer these questions about
zero-divisors.

• Does 3 multiply with 2(mod 6) to make zero?

• Does 3 multiply with 12(mod 18) to make zero?

• Is there a non-zero number to multiply 2(mod 4) to make zero?



• Is there a non-zero number to multiply 3(mod 4) to make zero?

• Is there a non-zero number to multiply 2(mod 10) to make zero?

Example 58 (Drill Time: Zero–Divisors 2). Answer these questions about
zero-divisors.

• Is 6(mod 15) a zero-divisor?

• Is 10(mod 15) a zero-divisor?

• Is 14(mod 21) a zero-divisor?

• Is 9(mod 33) a zero-divisor?

• Find a value n so that 4(mod n) is a zero-divisor.



• Find a value n so that 11(mod n) is a zero-divisor.

Related Idea: Factors; Prime and Composite Numbers

Definition 59. A factor of an integer n is any number a that has a
partner b with

a · b = n.

An positive integer n is prime if n has exactly two factors, 1 and n.
An positive integer n greater than one is composite if it is not prime.
That is, n is composite means that n has more than two factors.

Example 60 (Factors; Prime and Composite Numbers). Since 3 · 8 = 24,
the integer n = 24 has factors a = 3 and b = 8. Other factors for n = 24 are
1, 2, 4, 6, and 12. So n = 24 is definitely a composite number.

The integer n = 17 has no factors other than 1 and 17. So 17 is a prime
number.

Example 61 (Times Cipher and Zero–Divisors 1).

• Why is 13(mod 26) a zero–divisor for an English language times
cipher?

• Why is 8(mod 26) a zero–divisor for an English language times
cipher?



• Find other values for ? so that ?(mod 26) is a zero-divisor.

Example 62 (Times Cipher and Zero–Divisors 2).

• Why is 12(mod 24) a zero–divisor for a Greek language times cipher?

• Why is 10(mod 24) a zero–divisor for a Greek language times cipher?

• Find other values for ? so that ?(mod 24) is a zero-divisor.

! @ # $ % & ∅ Q ⊕ Σ Ψ
1 2 3 4 5 6 7 8 9 10 11

Example 63 (Times Cipher and Zero–Divisors 3).

• Is 3(mod 11) a zero–divisor for an alien language times cipher?



• Is 5(mod 11) a zero–divisor for an alien language times cipher?

• Is 10(mod 11) a zero–divisor for an alien language times cipher?

Related Idea: Greatest Common Divisor or gcd

Definition 64. The greatest common divisor of two numbers a and n,
often written as

gcd(a, n)

is the largest integer that is a factor of both a and n.

Two numbers a and n are said to be relatively prime if

gcd(a, n) = 1.

This means that 1 is the only factor both a and n share.

Example 65 (gcd). • For a = 12 and n = 18, we have gcd(12, 18) = 6.

• For a = 12 and n = 19, we have gcd(12, 19) = 1.
So 12 and 19 are relatively prime.

Related Idea: Finding gcd (Greatest Common Divisor)

Our previous definition of gcd(a, n) is really important! We should have a
way of finding gcd(a, n).

Theorem (Finding gcd). To find gcd(a, n), list all of the factors of both a
and n. Once the lists are complete, identify the largest number that appears
in both lists. If 1 is the largest number, then a and n are relatively prime.



Example 66 (Finding gcd). For a = 12 and n = 18 we know the following.

Factors of 12: 1, 2, 3, 4, 6, 12 and
Factors of 18: 1, 2, 3, 6, 9, 18.

Since 6 is the largest number that appears in both lists, gcd(12, 18) = 6.

For a = 12 and n = 19 we have the factors of 12 above, but 19 is prime and
only has factors 1 and 19. So gcd(12, 19) = 1.

Example 67 (Drill Time: Factors, GCD, and Relatively Prime).

• Is 6 a factor of 42?

• What are the factors of 56?

• What is gcd(15, 30)?

• What is gcd(15, 20)?

• What is gcd(12, 40)?

• Are 8 and 12 relatively prime?



• Are 5 and 12 relatively prime?

Related Idea: Unit

Definition 68. A value a < n with gcd(a, n) = 1 is called a unit modulo n.

Stated with mathematical notation, the simplified value

a(mod n)

is a unit when gcd(a, n) = 1.

If a > n (a is bigger than n), we usually first simplify
a(mod n) = b(mod n), then determine if b(mod n) is a unit.

Example 69 (Identifying units mod n). The value 12(mod 19) is a unit.
This is because gcd(12, 19) = 1.

The value 23(mod 20) is not simplified!
Note that 23(mod 20) = 3(mod 20). Since gcd(3, 20) = 1 we have
3(mod 20) a unit.
This says that 23(mod 20) = 3(mod 20) is a unit too!

Example 70 (English Times Cipher).

• Is 3(mod 26) an unit? Why or why not?

• What is 3× 9(mod 26)?



• What is 17× 23(mod 26)?

Related Idea: Zero-Divisor and Unit Connection

Theorem (Related Idea: Zero-Divisor and Unit Connection). A nonzero
modular arithmetic value a(mod n) is either a unit or a zero-divisor (but
not both).

• If gcd(a, n) = 1 then a(mod n) is a unit.

• If gcd(a, n) 6= 1 then a(mod n) is a zero-divisor.

Example 71 (Identifying zero-divisors and units mod n). The theorem
above allows us to easily list out units and zero-divisors by using gcd. For
(mod 12) the units are

1, 5, 7, 11

and the zero-divisors are every other non-zero value

2, 3, 4, 6, 8, 9, 10.

Related Idea: Multiplicative Inverse

There’s an idea related to units:

Definition 72. The unit a(mod n) has multiplicative inverse b(mod n) if

a · b = 1(mod n).

This also says that the multiplicative inverse of b(mod n) is a(mod n).

Example 73 (Multiplicative Inverses). For (mod 10), the units are
1, 3, 7, 9. Notice that

• 1 · 1 = 1(mod 10), so 1 is the multiplicative inverse of 1
(This is true for all n.)

• 3 · 7 = 21(mod 10) = 1(mod 10), so 3 and 7 are multiplicative inverses.
• 9 · 9 = 81(mod 10) = 1(mod 10), so 9 is the multiplicative inverse of

itself!



Finding Multiplicative Inverses, Method 1

Remember, only units have multiplicative inverses. This leads to our first
method for finding multiplicative inverses.

Theorem. To find the multiplicative inverse to a(mod n), where
gcd(a, n) = 1, do the following:

(i) Make a list of ALL units b(mod n). This list will always start with 1
and end with n− 1.

(ii) For each value b(mod n) in the list above, calculate a · b(mod n).
If a · b(mod n) = 1 then b is the multiplicative inverse.
If a · b(mod n) 6= 1 then go to the next number in the list.

For some values of n (like n = 12) there are very few units, so it is easy to
quickly check all products a · b(mod n).

Example of finding Multiplicative Inverses, Method 1

Example 74. For English language Times Ciphers, we use (mod 26). It is
easy to check that the units a(mod 26) are the odd values, excluding 13.
You can easily use Method 1 above to find the multiplicative inverse of all
units (mod 26):

Unit
Value 1 3 5 7 9 11 15 17 19 21 23 25
Mult.

Inverse 1 9 21 15 3 19 7 23 11 5 17 25

Notice that multiplicative inverses come in pairs;
9 is the multiplicative inverse of 3(mod 26) but this also says that 3 is the
multiplicative inverse of 9(mod 26)!

Finding Multiplicative Inverses, Method 2

Theorem. To find the multiplicative inverse to a(mod n), make two lists:

(i) Make multiples of the value n:

{n, 2n, 3n, 4n, . . .}

(ii) Add 1 to every member of the list from step (i):

{n+ 1, 2n+ 1, 3n+ 1, 4n+ 1, . . .}



Starting with n+ 1, divide each of the numbers from Step (ii) list by a.
If this division makes a number that is whole (no remainder/decimal)
then this number is the multiplicative inverse for a.

If not, move onto the next number. Sometimes you have to go back
and extend your lists.

Example of finding Multiplicative Inverses, Method 2

Example 75. The Ancient Roman Alphabet had only 23 letters. For this
language we would use (mod 23). Because there are so many units, it is
much easier to find multiplicative inverses using Method 2.

Let’s find the multiplicative inverse of 7(mod 23). Start by making our lists:

(i) Make multiples of the value 23:

{23, 46, 69, 92, 115, 138, 161, 184, 207, 230, . . .}

(ii) Add 1 to every member of the list from step (i):

{24, 47, 70, 93, 116, 139, 162, 185, 208, 231, . . .}

Now divide each number in list two by 7. On the third number we get
7÷ 70 = 10. This says that 10(mod 23) is the multiplicative inverse of
7(mod 23). We can check that 7 · 10(mod 23) = 1.

Example 76 (Drill Time: Multiplicative Inverse).

• Is 3 the multiplicative inverse to 2(mod 5)?

• Is 3 the multiplicative inverse to 7(mod 11)?



• Does 4(mod 7) have a multiplicative inverse?

• What is the multiplicative inverse to 3(mod 10)?

• What is the multiplicative inverse to 7(mod 11)?

• What is the multiplicative inverse to 5(mod 12)?

Decryption Method: Times Cipher

Definition 77. An English Language Times Cipher

?×�(mod 26) = �.

can be decrypted by finding a value ∗ (called snowflake) so that

? · ∗ = 1(mod 26)

Decryption can be described completely as

∗ ×�(mod 26) = �,

where ? · ∗ = 1(mod 26). Note: ∗ and ? are multiplicative inverses!



Big Connection: Which English Times Ciphers Work?

Theorem. The English Times Cipher

?×�(mod 26) = �

is only valid when gcd(?, 26) = 1.

This says that ? and 26 share only the factor 1. In other words, ?(mod 26)
is a unit!

Example 78 (English Times Ciphers that work). The values that ? can be
in an English Times Cipher are

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25

Big Connection: Which General Times Ciphers Work?

Theorem. The Times Cipher

?×�(mod n) = �

is only valid when gcd(?, n) = 1.

This says that ? and n share only the factor 1. In other words, ?(mod n) is
a unit!

Decryption of this Times Cipher is given by ∗ ×� = �(mod n), where ∗ is
the multiplicative inverse to ?.

Example 79 (A Language with 18 Characters). The values that ? can be
in a language with 18 characters are

1, 5, 7, 11, 13, 17

A curious fact: In any language with more than 2 characters, there are
always an even number of values that ? could be!

Greek Alphabet

α β γ δ ε ζ η θ ι κ λ µ
1 2 3 4 5 6 7 8 9 10 11 12
ν ξ o π ρ σ τ υ φ χ ψ ω
13 14 15 16 17 18 19 20 21 22 23 24

Alien Alphabet
! @ # $ % & ∅ Q ⊕ Σ Ψ
1 2 3 4 5 6 7 8 9 10 11



Example 80 (Times Ciphers in Different Languages).

• Is 5×� = � a valid cipher for the English alphabet?

• Is 4×� = � a valid cipher for the Greek alphabet?

• Is 8×� = � a valid cipher for the Alien alphabet?

Code Summary: Add in the Times Cipher

The summary below represents information about codes when encrypting
and decrypting English language plaintext.

Encrypt Decrypt Key Letter
Cipher Key(s) Key(s) Secrecy Frequency
Caesar 3 23 Private Normal
Shift ∆ ∇ Private Normal

Vigenère ∆1∆2∆3 . . . ∇1∇2∇3 . . . Private Less Predictable
∆1∆2∆3 . . . ∇1∇2∇3 . . . Even Less

Times ? ∗ Private Normal

Related Ideas: Key Distribution & Public Key Cipher

Definition 81 (Related Ideas: Key Distribution & Public Key Cipher).
The problem of Key Distribution in cryptography is that of giving all
intended recipients the necessary key to decrypt messages, while
simultaneously keeping those keys secret in general.



A major goal of cryptography is a Public Key Cipher. This is a code
system where the encryption key can be freely visible to anyone, but only
the intended recipient has the means of using the decryption key.

Example 82 (Related Ideas: Key Distribution & Public Key Cipher). You
want to check your savings account balance online, but you’d rather nobody
else knows what this is. You can use a login and password so your bank can
verify your identity. But how does the bank actually SEND you your
account information? The number has to go through various routing points,
all of which can be hacked. The bank could ENCRYPT the account
information, but how would you (or your computer) know how to decrypt
it?

Encryption: DHM Key Exchange

Definition 83. The DHM Key Exchange allows two parties that have
no prior knowledge of each other to exchange a secret key over (possibly
insecure) communication lines.

• DHM is named after the scientists, Diffie, Hellman, and Merkle, who
first published an article about the key exchange.

• British Intelligence actually knew about DHM before Diffie, Hellman,
and Merkle, but kept the key exchange a secret for national security
reasons.

• The idea of how this works is based on a mathematical process that is
EASY to do, but SUPER HARD to undo.

Related Ideas: DHM Key Mechanics

Example 84. Two parties, Alice and Bob, calculate a key that a third
person Carl will never know, even if Carl intercepts all communication
between Alice and Bob.

First off, Alice & Bob agree on numbers n and M (not secret).

1. Alice chooses a secret value a.
2. Bob chooses a secret value b.
3. Alice computes α = Ma(mod n)
4. Bob computes β = M b(mod n)



5. Alice sends α to Bob.
6. Bob sends β to Alice.
7. Alice computes that the key is K = βa(mod n).
8. Bob computes that the key is K = αb(mod n).

Note that K is the same for both Alice and Bob since
K = (Ma)b = (M b)a(mod n).

Example 85 (DHM Practice 1). Bob and Alice are trying to send a key
over unsecured communication lines. They agree to use M = 6 and n = 23.

• For a = 3, compute α = Ma(mod n) = 63(mod 23).

• For b = 5, compute β = M b(mod n) = 65(mod 23).

• For a = 21, the value α = Ma(mod n) = 621(mod 23) is too big.
What is a good way to break up this exponent?

Example 86 (DHM Practice 2). Bob and Alice are trying to send a key
over unsecured communication lines. They agree to use M = 6 and n = 23.

• For β = 2, compute βa(mod n) = 23(mod 23).



• For α = 9, compute αb(mod n) = 95(mod 23).

• What is the key for this exchange?

Example 87 (DHM Practice 2). Bob and Alice are trying to send a key
over unsecured communication lines. They agree to use M = 4 and n = 37.

• For a = 11, compute α = Ma(mod n).

• For b = 9, compute β = M b(mod n).

• For b = 30, the value β = M b(mod n) = 430(mod 37) is too big. What
is a good way to break up this exponent?



Example 88 (DHM Practice 2). Bob and Alice are trying to send a key
over unsecured communication lines. They agree to use M = 6 and n = 23.

• Note that 36(mod 37) = −1(mod 37). Can you use this to simplify
βa(mod 37) = 3611(mod 37)?

• Note that 214(mod 37) = 9. Can you use this to simplify
αb(mod 37) = 219(mod 37).

• What is the key for this exchange?

Example 89 (DHM Practice 3). Bob and Alice are trying to send a key
over unsecured communication lines. They agree to use M = 10 and n = 41.

• Compute M 2(mod n) = 102(mod 41).

• Compute M 5(mod n) = 105(mod 41).



• Can you use your answers above to easily calculate
α = M 17(mod 41)?

Example 90 (DHM Practice 3). Bob and Alice are trying to send a key
over unsecured communication lines. They agree to use M = 6 and n = 23.
Alice receives β = 18(mod 41) from Bob. Her secret value is a = 13.

• Calculate β4(mod 41) = 184(mod 41).

• Use your answer above to quickly calculate
β12(mod 41) = (184(mod 41))3.

• What is the key for this exchange?

Example 91 (Master Spy 1). You’ve been promoted to the highest rank in
the Spy Agency! It’s now time to learn about a modern and sophisticated
code. See if you can handle the following questions:



• How long does it take you to factor 2173 as a product of two primes
2173 = p · q?

• How long does it take you to multiply the numbers 41 and 53?

• If n is a big number, is it easy to factor? If p and q are big numbers,
is it easy to multiply them?

Encryption: RSA Cipher

Definition 92. The RSA Cipher is a public key cipher publicly
discovered in the 1970s. The RSA cipher uses a form of multiplication for
encryption and is secure because factoring large numbers is (currently) very
difficult to do.

• RSA stands for Rivest, Shamir, and Adleman, the people responsible
for first publicizing the RSA cipher.

• The British and US governments may have known about RSA prior
to the 1970s, but did not announce their discovery.

• Even though this is the basis for most modern cryptography, there is
current speculation that the US government (specifically the NSA)
has the ability to break this code.

RSA Encryption



Example 93. Here is how Alice and Bob can do to share a secret from
Carl:

What Alice Does

1. Alice chooses two (large) prime numbers p and q, which she keeps
secret.

2. She then multiplies to find n = p · q. This can be done quickly
because multiplication is “easy”.

3. Alice also calculates a value m = (p− 1)(q − 1).

4. She selects a value e(mod m) that is a unit.

So any choice of e with gcd(e,m) = 1 will work. The value e is
called the encryption exponent.

5. Next, Alice tells Bob (and anyone else) the values for n and e. The
fact that Alice can publicly state n and e is what makes RSA a public
key cipher.

What Bob Does To Send Alice a Message

6. Bob converts letters (or blocks of letters) into numbers. We can do
this is the standard way, but in real-life this gets done by a computer.

7. For each letter �, he uses the rule

�e(mod n) = �

to find the ciphertext. He sends this ciphertext to Alice.

Example 94 (Master Spy 2). You’ve been promoted to the highest rank in
the Spy Agency! It’s now time to learn about a modern and sophisticated
code. See if you can handle the following questions:

• If p = 71 and q = 59, find n = p · q.

• If p = 71 and q = 59, find m = (p− 1) · (q − 1).



• If p = 101 and q = 103, find n = p · q.

• If p = 101 and q = 103, find m = (p− 1) · (q − 1).

Example 95 (Master Spy 3). You’ve been promoted to the highest rank in
the Spy Agency! It’s now time to learn about a modern and sophisticated
code. See if you can handle the following questions:

• If p = 41 and q = 53, find n and m.

• If p = 101 and q = 107, find n and m.

• If p = 521 and q = 641, find n and m.



Example 96 (Master Spy 4). You’ve been promoted to the highest rank in
the Spy Agency! It’s now time to learn about a modern and sophisticated
code. See if you can handle the following questions:

• If p = 17 and q = 19, find n and m.

• If p = 7 and m = 132, find q and n.

• If p = 3 and q = 5, find all units (mod m).

• If p = 5 and q = 11, what is 27 · 3(mod m)?

Example 97 (Master Spy 5). A fellow agent wants you to send her a
message. She broadcasts the numbers n = 33 and e = 3, expecting that
these will be intercepted.

• Use this RSA cipher to encrypt the letter “H” as a number.



• Use this RSA cipher to encrypt the letter “I” as a number.

• Use this RSA cipher to encrypt the letter “J” as a number.

• The letters “H”, “I” and “J” are consecutive. Does RSA encrypt
these letters as consecutive numbers?

Example 98 (Master Spy 6). You want a fellow agent to send you a secret
message. You decide on the numbers n = 77 and e = 7 and publish these to
an open webpage.

• What number will the letter “B” be encrypted as?

• What number will the letter “C” be encrypted as?

• Encrypt the number “0203”? Is this connected to the answers above
in any way?



Example 99 (Master Spy 7). An enemy agent starts using RSA encryption.
Fortunately, a mole on the inside shares some secret information.

• The agent uses n = 33 and e = 3. What are 5 · e(mod m) and
7 · e(mod m)?

• The agent uses n = 55 and e = 27. What are 3 · e(mod m) and
7 · e(mod m)?

Related Idea: RSA Decryption

Example 100 (RSA Decryption). 1. Alice knows p, q, and
m = (p− 1) · (q − 1).

2. She finds the value d that is the multiplicative inverse to e(mod m).
This is called the decryption exponent.

3. Alice takes the ciphertext � she receives from Bob and applies the
decryption exponent in the following way to get back the plaintext
message:

�d(mod n) = �
This works because e and d are multiplicative inverses and the

algebra rule that says

�d = (�e)d = �e·d.

Which RSA Encryption/Decryption Exponents Work?

Theorem (Which RSA Encryption/Decryption Exponents Work?). The for
an RSA cipher that uses primes p and q with



• n = p · q
• m = (p− 1) · (q − 1)

The encryption exponent e(mod m) must be a unit. In other words
gcd(e,m) = 1.

The encryption exponent has a multiplicative inverse d(mod m) which is
the decryption exponent. Then d(mod m) is also a unit and gcd(d,m) = 1.

Example 101 (RSA Encryption/Decryption Exponents). For an RSA
cipher, if p = 43 and q = 67, is e = 11 a valid choice for an encryption
exponent?

Note that m = (43− 1)(67− 1) = 2772. It is easy to check that
gcd(11, 2772) = 11, so e = 11 WILL NOT WORK.

Example 102 (Master Spy 8). The mole on the inside shares some more
secret information about an enemy agent’s code.

• The enemy agent uses n = 143 and p = 11. Find q and m.

• Which of the following numbers of the form 120 · k + 1 is divisible by
7?

121, 241, 361, 481, 601, 721, 841, 961

• Use your answers from above to find the multiplicative inverse to
7(mod 120).



Example 103 (Master Spy 9). More information about the enemy agent’s
code:

• The enemy agent uses n = 77 and e = 7 for encryption. Find p, q and
m.

• Find the decryption key d(mod m). (Recall that d(mod m) is the
multiplicative inverse to e(mod m).)

• Decrypt “62” using your answer above. It might help to know that
6210(mod 77) = 1(mod 77).

Code Summary

The summary below represents information about codes when encrypting
and decrypting English language plaintext.

Encrypt Decrypt Key Letter
Cipher Key(s) Key(s) Secrecy Frequency
Caesar 3 23 Private Normal
Shift ∆ ∇ Private Normal

Vigenère ∆1∆2∆3 . . . ∇1∇2∇3 . . . Private Less Predictable
Times ? ∗ Private Normal
RSA n, e m, d Public “Random”

With RSA, private (encrypted) messages can be sent after keys are publicly
(open for interceptions) exchanged. This is what allow you to shop or
access your bank account online.


